ELECTRONIC STRUCTURES OF DIRECT-STACKED BIPHENYLENE NETWORK: A DFT STUDY

Authors

  • Art Anthony Z. Munio College of Arts and Sciences, Jose Rizal Memorial State University – Tampilisan Campus 7116 Tampilisan, Philippines
  • Alvanh Alem G. Pido Department of Physics, Mindanao State University – Main Campus, 9700 Marawi City, Philippines
  • Kenneth Ian M. Balili Department of Physics , Mindanao State University – Iligan Institute of Technology, 9200 Iligan City, Philippines

DOI:

https://doi.org/10.17605/OSF.IO/6C87W

Abstract

Here we provide a short theoretical report on the electronic structures of direct-stacked Biphenylene networks using density functional theory. The calculations reveal that direct-stacking of Biphenylene networks leads to splitting and shifting of the electronic bands, which leads to the slight deviation of the electronic density of states of the direct-stacked Biphenylene network compared to the monolayer Biphenylene network. However, in general, the band structure and density states of the direct-stacked systems resemble that of the monolayer Biphenylene network The calculations on the charge density difference show a very small charge redistribution in the direct-stacked systems.  These findings provide a preliminary understanding of the properties Biphenylene network in its stacked form.

Downloads

Download data is not yet available.

References

N. Choudhary, S. Hwang, and W. Choi, “Carbon Nanomaterials: A Review,” in Handbook of Nanomaterials Properties, B. Bhushan, D. Luo, S. R. Schricker, W. Sigmund, and S. Zauscher, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 709–769. doi: 10.1007/978-3-642-31107-9_37.

A. Ali and A. Andriyana, “Properties of multifunctional composite materials based on nanomaterials: a review,” RSC Advances, vol. 10, no. 28, pp. 16390–16403, 2020, doi: 10.1039/C9RA10594H.

N. Anzar, R. Hasan, M. Tyagi, N. Yadav, and J. Narang, “Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science,” Sensors International, vol. 1, p. 100003, Jan. 2020, doi: 10.1016/j.sintl.2020.100003.

M.-Y. Li, C.-H. Chen, Y. Shi, and L.-J. Li, “Heterostructures based on two-dimensional layered materials and their potential applications,” Materials Today, vol. 19, no. 6, pp. 322–335, Jul. 2016, doi: 10.1016/j.mattod.2015.11.003.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109–162, Jan. 2009, doi: 10.1103/RevModPhys.81.109.

G. Bepete and K. Coleman, “Carbon Nanotubes: Electronic Structure and Spectroscopy,” 2018. doi: 10.1016/B978-0-12-803581-8.11401-8.

Y. Jin, Y. Zheng, S. G. Podkolzin, and W. Lee, “Band gap of reduced graphene oxide tuned by controlling functional groups,” J. Mater. Chem. C, vol. 8, no. 14, pp. 4885–4894, Apr. 2020, doi: 10.1039/C9TC07063J.

A. Brakat and H. Zhu, “Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform,” Nano-Micro Lett., vol. 13, no. 1, p. 94, Mar. 2021, doi: 10.1007/s40820-021-00627-1.

J. Jelil, A. Abdurahman, O. Gülseren, and U. Schwingenschlogl, “Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer,” Applied Physics Letters, vol. 105, pp. 013103–013103, Jul. 2014, doi: 10.1063/1.4886968.

M. L. Ould NE, M. Boujnah, A. Benyoussef, and A. E. Kenz, “Electronic and Electrical Conductivity of AB and AA-Stacked Bilayer Graphene with Tunable Layer Separation,” J Supercond Nov Magn, vol. 30, no. 5, pp. 1263–1267, May 2017, doi: 10.1007/s10948-016-3910-7.

A. A. Z. Munio, A. A. G. Pido, and K. I. M. Balili, “FIRST-PRINCIPLES INSIGHTS ON THE BONDING MECHANISM OF DIRECT-STACKED BIPHENYLENE NETWORK,” International Engineering Journal For Research & Development, vol. 7, no. 1, Art. no. 1, Feb. 2022, doi: 10.17605/OSF.IO/4FNZ2.

A. A. Pido and B. Pagcaliwagan, First principles calculations of the electronic properties of O- and O2-NbSe2 complexes. 2022.

A. A. G. Pido, “TOPOLOGICAL ANALYSES OF THE ELECTRONIC DENSITY OF H-NbSe2 COMPLEXES,” International Engineering Journal For Research & Development, vol. 7, no. 1, Art. no. 1, Feb. 2022, doi: 10.17605/OSF.IO/NCS3V.

A. A. G. Pido, “ENERGY BARRIERS OF N2 ADSORPTION ON SiNR USING NUDGED ELASTIC BAND METHOD,” International Engineering Journal For Research & Development, vol. 7, no. 1, Art. no. 1, Feb. 2022, doi: 10.17605/OSF.IO/F8B2C.

A. A. G. Pido and A. A. Z. Munio, “COMPUTATIONAL MODELLING OF CELLULOSE AND CARBON-BASED NANOWIRES USING FIRST PRINCIPLES DENSITY FUNCTIONAL THEORY,” International Engineering Journal For Research & Development, vol. 7, no. 1, Art. no. 1, Feb. 2022, doi: 10.17605/OSF.IO/GTC96.

Y. Luo, C. Ren, Y. Xu, J. Yu, S. Wang, and M. Sun, “A first principles investigation on the structural, mechanical, electronic, and catalytic properties of biphenylene,” Sci Rep, vol. 11, no. 1, p. 19008, Dec. 2021, doi: 10.1038/s41598-021-98261-9.

Q. Fan et al., “Biphenylene network: A nonbenzenoid carbon allotrope,” Science, vol. 372, no. 6544, pp. 852–856, May 2021, doi: 10.1126/science.abg4509.

M. A. Hudspeth, B. W. Whitman, V. Barone, and J. E. Peralta, “Electronic Properties of the Biphenylene Sheet and Its One-Dimensional Derivatives,” ACS Nano, vol. 4, no. 8, pp. 4565–4570, Aug. 2010, doi: 10.1021/nn100758h.

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, no. 3B, pp. B864–B871, Nov. 1964, doi: 10.1103/PhysRev.136.B864.

P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J Phys Condens Matter, vol. 21, no. 39, p. 395502, Sep. 2009, doi: 10.1088/0953-8984/21/39/395502.

P. Giannozzi et al., “Quantum ESPRESSO toward the exascale,” J. Chem. Phys., vol. 152, no. 15, p. 154105, Apr. 2020, doi: 10.1063/5.0005082.

S. Grimme, A. Hansen, J. G. Brandenburg, and C. Bannwarth, “Dispersion-Corrected Mean-Field Electronic Structure Methods,” Chem. Rev., vol. 116, no. 9, pp. 5105–5154, May 2016, doi: 10.1021/acs.chemrev.5b00533.

K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, “Pseudopotentials for high-throughput DFT calculations,” Computational Materials Science, vol. 81, pp. 446–452, Jan. 2014, doi: 10.1016/j.commatsci.2013.08.053.

N. Choudhary, S. Hwang, and W. Choi, “Carbon Nanomaterials: A Review,” in Handbook of Nanomaterials Properties, B. Bhushan, D. Luo, S. R. Schricker, W. Sigmund, and S. Zauscher, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 709–769. doi: 10.1007/978-3-642-31107-9_37.

A. Ali and A. Andriyana, “Properties of multifunctional composite materials based on nanomaterials: a review,” RSC Advances, vol. 10, no. 28, pp. 16390–16403, 2020, doi: 10.1039/C9RA10594H.

N. Anzar, R. Hasan, M. Tyagi, N. Yadav, and J. Narang, “Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science,” Sensors International, vol. 1, p. 100003, Jan. 2020, doi: 10.1016/j.sintl.2020.100003.

M.-Y. Li, C.-H. Chen, Y. Shi, and L.-J. Li, “Heterostructures based on two-dimensional layered materials and their potential applications,” Materials Today, vol. 19, no. 6, pp. 322–335, Jul. 2016, doi: 10.1016/j.mattod.2015.11.003.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109–162, Jan. 2009, doi: 10.1103/RevModPhys.81.109.

G. Bepete and K. Coleman, “Carbon Nanotubes: Electronic Structure and Spectroscopy,” 2018. doi: 10.1016/B978-0-12-803581-8.11401-8.

Y. Jin, Y. Zheng, S. G. Podkolzin, and W. Lee, “Band gap of reduced graphene oxide tuned by controlling functional groups,” J. Mater. Chem. C, vol. 8, no. 14, pp. 4885–4894, Apr. 2020, doi: 10.1039/C9TC07063J.

A. Brakat and H. Zhu, “Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform,” Nano-Micro Lett., vol. 13, no. 1, p. 94, Mar. 2021, doi: 10.1007/s40820-021-00627-1.

J. Jelil, A. Abdurahman, O. Gülseren, and U. Schwingenschlogl, “Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer,” Applied Physics Letters, vol. 105, pp. 013103–013103, Jul. 2014, doi: 10.1063/1.4886968.

M. L. Ould NE, M. Boujnah, A. Benyoussef, and A. E. Kenz, “Electronic and Electrical Conductivity of AB and AA-Stacked Bilayer Graphene with Tunable Layer Separation,” J Supercond Nov Magn, vol. 30, no. 5, pp. 1263–1267, May 2017, doi: 10.1007/s10948-016-3910-7.

A. A. Z. Munio, A. A. G. Pido, and K. I. M. Balili, “FIRST-PRINCIPLES INSIGHTS ON THE BONDING MECHANISM OF DIRECT-STACKED BIPHENYLENE NETWORK,” International Engineering Journal For Research & Development, vol. 7, no. 1, Art. no. 1, Feb. 2022, doi: 10.17605/OSF.IO/4FNZ2.

A. A. Pido and B. Pagcaliwagan, First principles calculations of the electronic properties of O- and O2-NbSe2 complexes. 2022.

A. A. G. Pido, “TOPOLOGICAL ANALYSES OF THE ELECTRONIC DENSITY OF H-NbSe2 COMPLEXES,” International Engineering Journal For Research & Development, vol. 7, no. 1, Art. no. 1, Feb. 2022, doi: 10.17605/OSF.IO/NCS3V.

A. A. G. Pido, “ENERGY BARRIERS OF N2 ADSORPTION ON SiNR USING NUDGED ELASTIC BAND METHOD,” International Engineering Journal For Research & Development, vol. 7, no. 1, Art. no. 1, Feb. 2022, doi: 10.17605/OSF.IO/F8B2C.

A. A. G. Pido and A. A. Z. Munio, “COMPUTATIONAL MODELLING OF CELLULOSE AND CARBON-BASED NANOWIRES USING FIRST PRINCIPLES DENSITY FUNCTIONAL THEORY,” International Engineering Journal For Research & Development, vol. 7, no. 1, Art. no. 1, Feb. 2022, doi: 10.17605/OSF.IO/GTC96.

Y. Luo, C. Ren, Y. Xu, J. Yu, S. Wang, and M. Sun, “A first principles investigation on the structural, mechanical, electronic, and catalytic properties of biphenylene,” Sci Rep, vol. 11, no. 1, p. 19008, Dec. 2021, doi: 10.1038/s41598-021-98261-9.

Q. Fan et al., “Biphenylene network: A nonbenzenoid carbon allotrope,” Science, vol. 372, no. 6544, pp. 852–856, May 2021, doi: 10.1126/science.abg4509.

M. A. Hudspeth, B. W. Whitman, V. Barone, and J. E. Peralta, “Electronic Properties of the Biphenylene Sheet and Its One-Dimensional Derivatives,” ACS Nano, vol. 4, no. 8, pp. 4565–4570, Aug. 2010, doi: 10.1021/nn100758h.

P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, no. 3B, pp. B864–B871, Nov. 1964, doi: 10.1103/PhysRev.136.B864.

P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J Phys Condens Matter, vol. 21, no. 39, p. 395502, Sep. 2009, doi: 10.1088/0953-8984/21/39/395502.

P. Giannozzi et al., “Quantum ESPRESSO toward the exascale,” J. Chem. Phys., vol. 152, no. 15, p. 154105, Apr. 2020, doi: 10.1063/5.0005082.

S. Grimme, A. Hansen, J. G. Brandenburg, and C. Bannwarth, “Dispersion-Corrected Mean-Field Electronic Structure Methods,” Chem. Rev., vol. 116, no. 9, pp. 5105–5154, May 2016, doi: 10.1021/acs.chemrev.5b00533.

K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Vanderbilt, “Pseudopotentials for high-throughput DFT calculations,” Computational Materials Science, vol. 81, pp. 446–452, Jan. 2014, doi: 10.1016/j.commatsci.2013.08.053.

Downloads

Published

2022-02-27

How to Cite

[1]
Art Anthony Z. Munio, Alvanh Alem G. Pido, and Kenneth Ian M. Balili, “ELECTRONIC STRUCTURES OF DIRECT-STACKED BIPHENYLENE NETWORK: A DFT STUDY”, IEJRD - International Multidisciplinary Journal, vol. 7, no. 1, p. 6, Feb. 2022.